Terrestrial Planet Formation in Disks with Varying Surface Density Profiles

نویسنده

  • SEAN N. RAYMOND
چکیده

The “minimum-mass solar nebula” (MMSN) model estimates the surface density distribution of the protoplanetary disk by assuming the planets to have formed in situ. However, significant radial migration of the giant planets likely occurred in the Solar system, implying a distortion in the values derived by the MMSN method. The true density profiles of protoplanetary disks is therefore uncertain. Here we present results of simulations of late-stage terrestrial accretion, each starting from a disk of planetary embryos. We assume a power-law surface density profile that varies with heliocentric distance r as r−α, and vary α between 1/2 and 5/2 (α = 3/2 for the MMSN model). We find that for steeper profiles (higher values of α), the terrestrial planets (i) are more numerous, (ii) form more quickly, (iii) form closer to the star, (iv) are more massive, (v) have higher iron contents, and (vi) have lower water contents. However, the possibility of forming potentially habitable planets does not appear to vary strongly with α. Subject headings: astrobiology — planets and satellites: formation — methods: n-body simulations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reduced efficiency of terrestrial planet formation following giant planet migration

Substantial orbital migration of massive planets may occur in most extrasolar planetary systems. Since migration is likely to occur after a significant fraction of the dust has been locked up into planetesimals, ubiquitous migration could reduce the probability of forming terrestrial planets at radii of the order of 1 au. Using a simple time dependent model for the evolution of gas and solids i...

متن کامل

Terrestrial Planet Formation I. The Transition from Oligarchic Growth to Chaotic Growth

We use a hybrid, multiannulus, n-body–coagulation code to investigate the growth of km-sized planetesimals at 0.4–2 AU around a solar-type star. After a short runaway growth phase, protoplanets with masses of ∼ 10 g and larger form throughout the grid. When (i) the mass in these ‘oligarchs’ is roughly comparable to the mass in planetesimals and (ii) the surface density in oligarchs exceeds 2–3 ...

متن کامل

Detecting the Dusty Debris of Terrestrial Planet Formation

We use a multiannulus accretion code to investigate debris disks in the terrestrial zone, at 0.7–1.3 AU around a 1 M⊙ star. Terrestrial planet formation produces a bright dusty ring of debris with a lifetime of & 10 yr. The early phases of terrestrial planet formation are observable with current facilities; the late stages require more advanced instruments with adaptive optics. Subject headings...

متن کامل

Terrestrial Planet Formation in Extra-Solar Planetary Systems

Terrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moonto Mars-sized protoplanets, also called “planeta...

متن کامل

Type I Planet Migration in Nearly Laminar Disks

We describe 2D hydrodynamic simulations of the migration of low-mass planets (≤ 30M⊕) in nearly laminar disks (viscosity parameter α < 10 ) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of α values and planet masses. Disk selfgravity is fully included...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005